Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1951, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431716

RESUMO

Epoxides, as a prominent small ring O-heterocyclic and the privileged pharmacophores for medicinal chemistry, have recently represented an ideal substrate for the development of single-atom replacements. The previous O-to-C replacement strategy for epoxides to date typically requires high temperatures to achieve low yields and lacks substrate range and functional group tolerance, so achieving this oxygen-carbon exchange remains a formidable challenge. Here, we report a silver-catalyzed direct conversion of epoxides into trifluoromethylcyclopropanes in a single step using trifluoromethyl N-triftosylhydrazones as carbene precursors, thereby achieving oxygen-carbon exchange via a tandem deoxygenation/[2 + 1] cycloaddition. The reaction shows broad tolerance of functional groups, allowing routine cheletropic olefin synthesis in a strategy for the net oxygen-carbon exchange reaction. The utility of this method is further showcased with the late-stage diversification of epoxides derived from bioactive natural products and drugs. Mechanistic experiments and DFT calculations elucidate the reaction mechanism and the origin of the chemo- and stereoselectivity.

2.
J Nat Prod ; 87(4): 869-875, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38427968

RESUMO

Cannabidiol (CBD), a prominent phytocannabinoid found in various Cannabis chemotypes, is under extensive investigation for its therapeutic potential. Moreover, because it is nonpsychoactive, it can also be utilized as a functional ingredient in foods and supplements in certain countries, depending on its legal status. From a chemical reactivity point of view, CBD can undergo conversion into different structurally related compounds both during storage and after the consumption of CBD-based products. The analytical determination of these compounds is of paramount concern due to potential toxicity and the risk of losing the active ingredient (CBD) title. Consequently, the complete stereoselective total synthesis of representative CBD-derived compounds has become a matter of great interest. The synthesis of pure CBD-derived compounds, achievable in a few synthetic steps, is essential for preparing analytical standards and facilitating biological studies. This paper details the transformation of the readily available CBD into Δ8-THC, Δ9-THC, Δ8-iso-THC, CBE, HCDN, CBDQ, Δ6-iso-CBD, and 1,8-cineol cannabinoid (CCB). The described protocols were executed without the extensive use of protecting groups, avoiding tedious purifications, and ensuring complete control over the structural features.


Assuntos
Canabidiol , Canabinoides , Canabinoides/síntese química , Canabinoides/química , Canabidiol/química , Canabidiol/síntese química , Estrutura Molecular , Cannabis/química , Estereoisomerismo
3.
J Pharm Biomed Anal ; 239: 115902, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101238

RESUMO

The key role of chiral small molecules in drug discovery programs has been deeply investigated throughout last decades. In this context, our previous studies highlighted the influence of the absolute configuration of different stereocenters on the pharmacokinetic, pharmacodynamic and functional properties of promising Sigma receptor (SR) modulators. Thus, starting from the racemic SR ligand RC752, we report herein the isolation of the enantiomers via enantioselective separation with both HPLC and SFC. After optimization of the eco-sustainable chiral SFC method, both enantiomers were obtained in sufficient amount (tens of mg) and purity (ee up to 95%) to allow their characterization and initial biological investigation. Both enantiomers a) displayed a high affinity for the S1R subtype (Ki = 15.0 ± 1.7 and 6.0 ± 1.2 nM for the (S)- and (R)-enantiomer, respectively), but only negligible affinity toward the S2R (> 350 nM), and b) were rapidly metabolized when incubated with mouse and human hepatic microsomes. Furthermore, the activity on AQP-mediated water permeability indicated a different functional profile for the enantiomers in terms of modulatory effect on the peroxiporins gating.


Assuntos
Receptores sigma , Humanos , Camundongos , Animais , Estereoisomerismo , Microssomos Hepáticos , Ligação Proteica , Cromatografia Líquida de Alta Pressão/métodos
4.
J Org Chem ; 88(24): 16783-16789, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38032548

RESUMO

In this work, we successfully employed electrochemical conditions to promote a Hofer-Moest, intramolecular Friedel-Crafts alkylation sequence. The reaction proceeds under mild conditions, employing carboxylic acids as starting materials. Notably, the electrochemical process performed in batch was adapted to a continuous flow electrolysis apparatus to provide a significant improvement. This catalyst-free, electrochemical approach produces an array of tetrahydronaphthalenes that could be used for API synthesis.

5.
J Am Chem Soc ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926946

RESUMO

Ring-fused azacyclic compounds are important building units in the synthesis of biorelevant natural products, pharmaceutical agents, and molecular materials. Herein, we present a new approach to these condensed azacycles by a biomimetic cascade cyclization of arylalkenyl dioxazolones. This cascade reaction was found to proceed with excellent stereoselectivity and a high functional group tolerance. The substrate scope of arylalkenyl dioxazolones turned out to be highly flexible and extendable to additional terminating subunits, such as heteroaryl and alkynyl moieties. This biomimetic cyclization was elucidated to be initiated by an intramolecular transfer of the in situ generated electrophilic Ir-acylnitrenoid to the tethered olefinic double bond, leading to a key N-acylaziridine intermediate, which is in turn reacted with pendant (hetero)arenes or alkynes in a highly regio- and stereoselective manner to produce ring-fused azacyclic compounds.

6.
Int J Biol Macromol ; 246: 125609, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394218

RESUMO

The protein NLRP3 and its complexes are associated with an array of inflammatory pathologies, among which neurodegenerative, autoimmune, and metabolic diseases. Targeting the NLRP3 inflammasome represents a promising strategy for easing the symptoms of pathologic neuroinflammation. When the inflammasome is activated, NLRP3 undergoes a conformational change triggering the production of pro-inflammatory cytokines IL-1ß and IL-18, as well as cell death by pyroptosis. NLRP3 nucleotide-binding and oligomerization (NACHT) domain plays a crucial role in this function by binding and hydrolysing ATP and is primarily responsible, together with conformational transitions involving the PYD domain, for the complex-assembly process. Allosteric ligands proved able to induce NLRP3 inhibition. Herein, we examine the origins of allosteric inhibition of NLRP3. Through the use of molecular dynamics (MD) simulations and advanced analysis methods, we provide molecular-level insights into how allosteric binding affects protein structure and dynamics, remodelling of the conformational ensembles populated by the protein, with key reverberations on how NLRP3 is preorganized for assembly and ultimately function. The data are used to develop a Machine Learning model to define the protein as Active or Inactive, only based on the analysis of its internal dynamics. We propose this model as a novel tool to select allosteric ligands.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligantes , Citocinas , Desenho de Fármacos , Interleucina-1beta/metabolismo
7.
J Chem Theory Comput ; 19(7): 2120-2134, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36926878

RESUMO

SARS-CoV-2 has evolved rapidly in the first 3 years of pandemic diffusion. The initial evolution of the virus appeared to proceed through big jumps in sequence changes rather than through the stepwise accumulation of point mutations on already established variants. Here, we examine whether this nonlinear mutational process reverberates in variations of the conformational dynamics of the SARS-CoV-2 Spike protein (S-protein), the first point of contact between the virus and the human host. We run extensive microsecond-scale molecular dynamics simulations of seven distinct variants of the protein in their fully glycosylated state and set out to elucidate possible links between the mutational spectrum of the S-protein and the structural dynamics of the respective variant, at global and local levels. The results reveal that mutation-dependent structural and dynamic modulations mostly consist of increased coordinated motions in variants that acquire stability and in an increased internal flexibility in variants that are less stable. Importantly, a limited number of functionally important substructures (the receptor binding domain, in particular) share the same time of movements in all variants, indicating efficient preorganization for functional regions dedicated to host interactions. Our results support a model in which the internal dynamics of the S-proteins from different strains varies in a way that reflects the observed random and non-stepwise jumps in sequence evolution, while conserving the functionally oriented traits of conformational dynamics necessary to support productive interactions with host receptors.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Difusão , Mutação , Ligação Proteica
8.
J Org Chem ; 87(15): 9497-9506, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35820228

RESUMO

Properly substituted tetrahydrofuran (THF) rings are important building blocks in the synthesis of many natural metabolites. Having reliable procedures to control the stereoselectivity at the THF core while decorating it with different substituents is a fundamental requirement to achieve and fulfill the complexity of nature. We recently reported a new chemical approach to control the stereochemistry in the alkylation and arylation of furanoside derivatives by using a rhenium(V) complex to form an intermediate oxo-carbenium species able to react with proper soft nucleophiles. Here, we describe theoretical calculations, performed at the DFT B3LYP level, to disclose the important mechanistic features which regulate the entire catalytic cycle of the reaction of mono- and disubstituted furanosides with allyltrimethylsilane catalyzed by Re(O)Cl3(OPPh3)(Me2S). Moreover, the key factors governing the allylation step were investigated, confirming that the stereoselectivity, which is independent of the anomeric configuration of starting acetal, mainly arises from the orientation of the substituent at C-4, with only marginal contribution of the substituent at C-5. Finally, puckering Cremer-Pople parameters were used to take trace of the structural modifications throughout the catalytic cycle.


Assuntos
Rênio , Catálise , Rênio/química
9.
J Org Chem ; 86(11): 7672-7686, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34033490

RESUMO

A novel approach for the formation of anomeric carbon-functionalized furanoside systems was accomplished through the employment of an oxo-rhenium catalyst. The transformation boasts a broad range of nucleophiles including allylsilanes, enol ethers, and aromatics in addition to sulfur, nitrogen, and hydride donors, able to react with an oxocarbenium ion intermediate derived from furanosidic structures. The excellent stereoselectivities observed followed the Woerpel model, ultimately providing 1,3-cis-1,4-trans systems. In the case of electron-rich aromatic nucleophiles, an equilibration occurs at the anomeric center with the selective formation of 1,3-trans-1,4-cis systems. This anomalous result was rationalized through density functional theory calculations. Different oxocarbenium ions such as those derived from dihydroisobenzofuran, pyrrolidine, and oxazolidine heterocycles can also be used as a substrate for the oxo-Re-mediated allylation reaction.


Assuntos
Rênio , Álcoois , Catálise , Éteres , Glicosilação
10.
Inorg Chem ; 59(16): 11329-11336, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799510

RESUMO

Iron porphyrin methoxy complexes, of the general formula [Fe(porphyrin)(OCH3)], are able to catalyze the reaction of diazo compounds with alkenes to give cyclopropane products with very high efficiency and selectivity. The overall mechanism of these reactions was thoroughly investigated with the aid of a computational approach based on density functional theory calculations. The energy profile for the processes catalyzed by the oxidized [FeIII(Por)(OCH3)] (Por = porphine) as well as the reduced [FeII(Por)(OCH3)]- forms of the iron porphyrin was determined. The main reaction step is the same in both of the cases, that is, the one leading to the terminal-carbene intermediate [Fe(Por)(OCH3)(CHCO2Et)] with simultaneous dinitrogen loss; however, the reduced species performs much better than the oxidized one. Contrarily to the iron(III) profile in which the carbene intermediate is directly obtained from the starting reactant complex, the favored iron(II) process is more intricate. The initially formed reactant adduct between [FeII(Por)(OCH3)]- and ethyl diazoacetate (EDA) is converted into a closer reactant adduct, which is in turn converted into the terminal iron porphyrin carbene [Fe(Por)(OCH3)(CHCO2Et)]-. The two corresponding transition states are almost isoenergetic, thus raising the question of whether the rate-determining step corresponds to dinitrogen loss or to the previous structural and electronic rearrangement. The ethylene addition to the terminal carbene is a downhill process, which, on the open-shell singlet surface, presents a defined but probably short-living diradicaloid intermediate, though other spin-state surfaces do not show this intermediate allowing a direct access to the cyclopropane product. For the crucial stationary points, the more complex catalyst [Fe(2)(OCH3)], in which a sterically hindered chiral bulk is mounted onto the porphyrin, was investigated. The corresponding computational data disclose the very significant effect of the porphyrin skeleton on the reaction energy profile. Though the geometrical features around the reactive core of the system remain unchanged, the energy barriers become much lower, thus revealing the profound effects that can be exerted by the three-dimensional organic scaffold surrounding the reaction site.

11.
Chem Commun (Camb) ; 56(53): 7281-7284, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32478359

RESUMO

An orthogonal selectivity for distal meta-C-H activation of benzophenone is acheived by overriding the inherent proximal ortho-selectivity through a template assisted metalation approach. This strategy has been successfully utilized in Pd-catalyzed regioselective C-C and C-Si bond formation.

12.
Chemistry ; 25(3): 750-753, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30414281

RESUMO

A silver(I) catalyzed regioselective trifluoromethylation of allenes using Langlois's salt (NaOSOCF3 ) is demonstrated. This transformation enables direct expedient access to α-trifluoromethylated acroleins, which are valuable synthons for a number of pharmaceuticals and agrochemicals containing vinyl-CF3 moieties. Versatility of this trifluoromethylation method has been established with good yield and excellent regioselectivity. Preliminary experiments and computational studies were carried out to elucidate the mechanistic insight of this protocol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...